Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 94(9): 4546-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21854927

RESUMO

Diets containing corn starch may improve glucose supply by providing significant amounts of intestinal starch and increasing intestinal glucose absorption in dairy cows. Glucose absorption in the small intestine requires specific glucose transporters; that is, sodium-dependent glucose co-transporter-1 (SGLT1) and facilitated glucose transporter (GLUT2), which are usually downregulated in the small intestine of functional ruminants but are upregulated when luminal glucose is available. We tested the hypothesis that mRNA and protein expression of intestinal glucose transporters and mRNA expression of enzymes related to gluconeogenesis are affected by variable starch supply. Dairy cows (n=9/group) were fed for 4 wk total mixed rations (TMR) containing either high (HS) or low (LS) starch levels in the diet. Feed intake and milk yield were measured daily. After slaughter, tissue samples of the small intestinal mucosa (mid-duodenum and mid-jejunum) were taken for determination of mRNA concentrations of SGLT1 and GLUT2 as well as pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase by real-time reverse transcription PCR relative to a housekeeping gene. Protein expression of GLUT2 in crude mucosal membranes and of SGLT1 and GLUT2 in brush-border membrane vesicles was quantified by sodium dodecyl sulfate-PAGE and immunoblot. A mixed model was used to examine feeding and time-related changes on feed intake and milk yield and to test feeding and gut site effects on gene or protein expression of glucose transporters and enzymes in the intestinal mucosa. Dry matter intake, but not energy intake, was higher in cows fed HS compared with LS. Abundance of SGLT1 mRNA tended to be higher in duodenal than in jejunal mucosa, and mRNA abundances of pyruvate carboxylase tended to be higher in jejunal than in duodenal mucosa. In brush-border membrane vesicles, SGLT1 and GLUT2 protein expression could be demonstrated. No diet-dependent differences were found concerning mRNA and protein contents of glucose transporter or mRNA level of gluconeogenic enzymes. In conclusion, our investigations on glucose transporters and gluconeogenic enzymes in the small intestinal mucosa of dairy cows did not show significant diet regulation when TMR with different amounts of intestinal starch were fed. Therefore, predicted intestinal glucose absorption after enhanced starch feeding is probably not supported by changes of intestinal glucose transporters in dairy cows.


Assuntos
Dieta/veterinária , Glucose/biossíntese , Mucosa Intestinal/enzimologia , Lactação/metabolismo , Proteínas de Transporte de Sódio-Glucose/análise , Amido/farmacologia , Animais , Bovinos , Relação Dose-Resposta a Droga , Duodeno/química , Duodeno/efeitos dos fármacos , Duodeno/enzimologia , Duodeno/metabolismo , Feminino , Transportador de Glucose Tipo 2/análise , Glucose-6-Fosfatase/análise , Mucosa Intestinal/química , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Jejuno/química , Jejuno/efeitos dos fármacos , Jejuno/enzimologia , Jejuno/metabolismo , Lactação/efeitos dos fármacos , Piruvato Carboxilase/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Transportador 1 de Glucose-Sódio/análise , Amido/administração & dosagem
2.
J Dairy Sci ; 93(12): 5867-76, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21094760

RESUMO

Feeding rumen-protected fat (RPF) can improve energy supply for dairy cows but it affects glucose metabolism. Glucose availability is a precondition for high milk production in dairy cows. Therefore, this study investigated endocrine regulation of glucose homeostasis and hepatic gene expression related to glucose production because of RPF feeding in lactating cows. Eighteen Holstein dairy cows during second lactation were fed either a diet containing RPF (mainly C16:0 and C18:1; FD; n = 9) or a control diet based on corn starch (SD; n = 9) for 4 wk starting at 98 d in milk (DIM). Feed intake and milk yield were measured daily and milk composition once a week. Blood samples were taken weekly for analyses of plasma triglyceride, nonesterified fatty acids (NEFA), ß-hydroxybutyrate, bilirubin, urea, lactate, glucose, insulin, and glucagon. At 124 DIM, an intravenous glucose tolerance test (GTT; 1g/kg of BW(0.75)) was performed after a 12-h period without food. Blood samples were taken before and 7, 14, 21, and 28 min after glucose administration, and plasma concentrations of glucose, insulin, and glucagon were measured. Glucose half-life as well as areas under the concentration curve for glucose, insulin, and glucagon were calculated. After slaughter at d 28 of treatment, liver samples were taken to measure mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose 6-phosphatase (G6Pase), and facilitative glucose transporter 2. Dry matter intake, but not energy and protein intake, was lower in FD than in SD. Milk yield during lactation decreased more in SD than in FD, and milk protein was lower in FD than in SD. Plasma concentrations of triglycerides and NEFA were higher in FD than in SD. Plasma insulin concentrations were lower and the glucagon:insulin ratios were higher in FD than in SD. Fasting glucose concentration before GTT was lower, and fasting glucagon concentrations tended to be higher in FD than in SD. In liver, fat content tended to be higher and G6Pase mRNA abundance was lower in FD than in SD. Lower hepatic G6Pase mRNA abundance was associated with reduced fasting plasma glucose concentrations, but the glucose-induced insulin response was not affected by RPF feeding. Hepatic G6Pase gene expression might be affected by DMI and might be involved in the regulation of glucose homeostasis in dairy cows, resulting in a lower hepatic glucose output after RPF feeding.


Assuntos
Bovinos/fisiologia , Gorduras na Dieta/metabolismo , Glucose/metabolismo , Lactação/fisiologia , Fígado/metabolismo , Leite/metabolismo , Rúmen/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/metabolismo , Dieta/veterinária , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Feminino , Insulina/sangue
3.
J Dairy Sci ; 92(4): 1670-84, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19307649

RESUMO

Effects of dietary fat supplementation prepartum on liver lipids and metabolism in dairy cows are contradictory. Thus, we examined in 18 German Holstein cows (half-sib; first lactation 305-d milk yield >9,000 kg) whether dietary fat:carbohydrate ratio during the last trimester of gestation affects lipid metabolism and milk yield. The diets were formulated to be isoenergetic and isonitrogenous but differed in rumen-protected fat (FD; 28 and 46.5 g/kg of dry matter during far-off and close-up dry period; mainly C16:0 and C18:1) and starch concentration [carbohydrate diet (CD); 2.3 times as much starch as FD]. Diets were given ad libitum starting 12 wk before expected parturition. After parturition all cows were fed a single lactation diet ad libitum for 14 wk. With the FD treatment, dry matter intake was depressed prepartum, milk yield during first 4 wk of lactation was lower (36.9 vs. 41.0 kg/d), and postpartum energy balance during this period was more negative. During the first 4 wk, cows in the FD group had lower lactose percentage and yield but higher milk fat, whereas milk protein and fat yield as well as energy-corrected milk did not differ. Between wk 5 and 14, milk fat and milk protein percentage was lower in CD than in FD. Milk fat C14:0 was lower and C16:1 was higher in the FD group. For FD cows, plasma triacylglycerol, nonesterified fatty acids, and cholesterol concentrations were higher prepartum, whereas plasma beta-hydroxybutyrate and glucose concentrations were lower. During the first 10 d after parturition, plasma triacylglycerol concentration was higher in FD, and prepartum plasma glucose and cholesterol differences persisted during the first 14 wk of lactation. Irrespective of prepartum nutrient composition, concentrations of plasma leptin and subcutaneous fat leptin mRNA decreased between -10 d to +10 d relative to parturition, and liver lipids and glycogen reached maximum and minimal values, respectively, 10 d after parturition. Acetyl-coenzyme A carboxylase alpha mRNA abundance in subcutaneous fat decreased between -10 d to +1 d relative to parturition by 97%, whereas it was generally much lower in the liver and remained at a low level until wk 14 of lactation. In conclusion, feeding a diet containing rumen-protected fat during late lactation and dry period until calving negatively affected dry matter intake, energy balance, and milk yield during subsequent lactation, did not change acetyl-coenzyme A carboxylase alpha mRNA abundance in subcutaneous fat, and was not beneficial for liver lipid accumulation.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Gorduras na Dieta/metabolismo , Lactação/fisiologia , Rúmen/metabolismo , Tecido Adiposo/anatomia & histologia , Tecido Adiposo/metabolismo , Animais , Análise Química do Sangue , Peso Corporal/fisiologia , Bovinos/metabolismo , Indústria de Laticínios , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Feminino , Fígado/metabolismo , Leite/metabolismo , Gravidez , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...